000 01719cam a22002897a 4500
001 004461
003 armpuni
005 20160923153929.0
008 160923s1996####xx#a##########000#0#und#d
040 _aarmpuni
_carmpuni
041 _aen
080 _a621.372
100 1 _aHaykin, Simon
245 1 0 _aAdaptive filter theory /
_cSimon Haykin
250 _athird edition
260 _aNew Jersey :
_bPrentice Hall,
_c1996
300 _axii, 989 p.:
_bil.;
_c23 cm.
500 _aabbreviations p. 932
500 _aAppendix p.
500 _aBibliography p. 941
500 _aIncluye glosario p. 928
500 _aPrincipal symbols p. 933
550 _aLinear filter structures. Backround material.Discrete-time signal processing. Stationary processes and models. Spectrum analysis. Eigenanalysis. Linear optimum filtering. Wiener filters. Linear prediction. Kalman filters. Linear adaptive filtering. Method of steepes descent. Least-Mean-Square algorithm. Frequency-domain adaptive filters. Method of least squares. Rotations and reflections. Recursive least-squares algorithm. Square-Root Adaptive filters. Order-recursive adaptive filters. Tracking of time-varyng systems. Finite-precision effects. Nonlinear adaptive filtering. Blind deconvolution. Back-propagation learning. Radial basis function networks. Complex variables. Differentiation with respect to a vector. Methods of lagrange multipliers. Estimation theory. Maximum-entropy method. Minimum-variance distortionless response spectrum. Grandient adaptive lattice algorithm. Steady-state analysis of the LMS Algorithm without invoking the independence assumption.
650 7 _aFILTROS
_2LEMB
942 _cLB
_2cdu
945 _aMDC
_d1999-09-14
999 _c4460
_d5635